REAL

Ribonucleotide reductase inhibition by metal complexes of Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone): A combined experimental and theoretical study

Popović-Bijelić, Ana and Kowol, Christian R. and Lind, Maria E.S. and Luo, Jinghui and Himo, Fahmi and Enyedy, Éva Anna and Arion, Vladimir B. and Gräslund, Astrid (2011) Ribonucleotide reductase inhibition by metal complexes of Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone): A combined experimental and theoretical study. JOURNAL OF INORGANIC BIOCHEMISTRY, 105 (11). pp. 1422-1431. ISSN 0162-0134

[img] Text
JIB_2011_105-1422-1431.PDF - Published Version
Restricted to Registered users only

Download (1MB) | Request a copy

Abstract

Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone, 3-AP) is currently the most promising chemotherapeutic compound among the class of α-N-heterocyclic thiosemicarbazones. Here we report further insights into the mechanism(s) of anticancer drug activity and inhibition of mouse ribonucleotide reductase (RNR) by Triapine. In addition to the metal-free ligand, its iron(III), gallium(III), zinc(II) and copper(II) complexes were studied, aiming to correlate their cytotoxic activities with their effects on the diferric/tyrosyl radical center of the RNR enzyme in vitro. In this study we propose for the first time a potential specific binding pocket for Triapine on the surface of the mouse R2 RNR protein. In our mechanistic model, interaction with Triapine results in the labilization of the diferric center in the R2 protein. Subsequently the Triapine molecules act as iron chelators. In the absence of external reductants, and in presence of the mouse R2 RNR protein, catalytic amounts of the iron(III)–Triapine are reduced to the iron(II)–Triapine complex. In the presence of an external reductant (dithiothreitol), stoichiometric amounts of the potently reactive iron(II)–Triapine complex are formed. Formation of the iron(II)–Triapine complex, as the essential part of the reaction outcome, promotes further reactions with molecular oxygen, which give rise to reactive oxygen species (ROS) and thereby damage the RNR enzyme. Triapine affects the diferric center of the mouse R2 protein and, unlike hydroxyurea, is not a potent reductant, not likely to act directly on the tyrosyl radical.

Item Type: Article
Uncontrolled Keywords: Ribonucleotide reductase (RNR), Triapine, Tyrosyl radical, Metal complex, Cytotoxicity, EPR
Subjects: Q Science / természettudomány > QD Chemistry / kémia
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 29 Jul 2024 14:17
Last Modified: 29 Jul 2024 14:17
URI: https://real.mtak.hu/id/eprint/201073

Actions (login required)

Edit Item Edit Item