Halasi, Gyula and Vass, Csaba and Yu, K. M. and Vári, Gábor and Farkas, Arnold P. and Palotás, Krisztián and Berkó, András and Kiss, János and Kónya, Zoltán and Aeschlimann, M. and Stadtmüller, B. and Dombi, Péter and Óvári, László (2024) Enhancing the dipole ring of hexagonal boron nitride nanomesh by surface alloying. NPJ 2D MATERIALS AND APPLICATIONS, 8. No.-48. ISSN 2397-7132
|
Text
91-npj2DMaterAppl8_48.pdf - Published Version Available under License Creative Commons Attribution. Download (3MB) | Preview |
Abstract
Surface templating by electrostatic surface potentials is the least invasive way to design large-scale artificial nanostructures. However, generating sufficiently large potential gradients remains challenging. Here, we lay the groundwork for significantly enhancing local electrostatic fields by chemical modification of the surface. We consider the hexagonal boron nitride (h-BN) nanomesh on Rh(111), which already exhibits small surface potential gradients between its pore and wire regions. Using photoemission spectroscopy, we show that adding Au atoms to the Rh(111) surface layer leads to a local migration of Au atoms below the wire regions of the nanomesh. This significantly increases the local work function difference between the pore and wire regions that can be quantified experimentally by the changes in the h-BN valence band structure. Using density functional theory, we identify an electron transfer from Rh to Au as the microscopic origin for the local enhancement of potential gradients within the h-BN nanomesh.
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > QC Physics / fizika > QC06 Physics of condensed matter / szilárdtestfizika Q Science / természettudomány > QC Physics / fizika > QC173.4 Material science / anyagtudomány Q Science / természettudomány > QD Chemistry / kémia > QD02 Physical chemistry / fizikai kémia |
Depositing User: | Dr. Krisztián Palotás |
Date Deposited: | 31 Jul 2024 06:16 |
Last Modified: | 31 Jul 2024 06:16 |
URI: | https://real.mtak.hu/id/eprint/201236 |
Actions (login required)
Edit Item |