REAL

Irregular boundaries stereo images dataset creating using depth estimation model

Wahsh, Muntasser A. and Hussain, Zainab M. (2024) Irregular boundaries stereo images dataset creating using depth estimation model. POLLACK PERIODICA : AN INTERNATIONAL JOURNAL FOR ENGINEERING AND INFORMATION SCIENCES, 19 (1). pp. 143-150. ISSN 1788-1994 (print); 1788-3911 (online)

[img] Text
606-article-p143.pdf - Published Version
Restricted to Repository staff only

Download (1MB)

Abstract

This paper introduces a stereoscopic image and depth dataset created using a deep learning model. It addresses the challenge of obtaining accurate and annotated stereo image pairs with irregular boundaries for deep learning model training. Stereoscopic image and depth dataset provides a unique resource for training deep learning models to handle irregular boundary stereoscopic images, which are valuable for real-world scenarios with complex shapes or occlusions. The dataset is created using monocular depth estimation, a state-of-the-art depth estimation model, and it can be used in applications like rectifying images, estimating depth, detecting objects, and autonomous driving. Overall, this paper presents a novel dataset that demonstrates its effectiveness and potential for advancing stereo vision and developing deep learning models for computer vision applications.

Item Type: Article
Uncontrolled Keywords: stereoscopic images; depth estimation; stereo vision; monocular to stereoscopic; stereo pair generation; image-based 3D reconstruction
Subjects: Q Science / természettudomány > QA Mathematics / matematika > QA75 Electronic computers. Computer science / számítástechnika, számítógéptudomány
T Technology / alkalmazott, műszaki tudományok > TA Engineering (General). Civil engineering (General) / általános mérnöki tudományok
Depositing User: Emese Kató
Date Deposited: 08 Aug 2024 09:15
Last Modified: 08 Aug 2024 09:27
URI: https://real.mtak.hu/id/eprint/202113

Actions (login required)

Edit Item Edit Item