Wahsh, Muntasser A. and Hussain, Zainab M. (2024) Irregular boundaries stereo images dataset creating using depth estimation model. POLLACK PERIODICA : AN INTERNATIONAL JOURNAL FOR ENGINEERING AND INFORMATION SCIENCES, 19 (1). pp. 143-150. ISSN 1788-1994 (print); 1788-3911 (online)
![]() |
Text
606-article-p143.pdf - Published Version Restricted to Repository staff only Download (1MB) |
Abstract
This paper introduces a stereoscopic image and depth dataset created using a deep learning model. It addresses the challenge of obtaining accurate and annotated stereo image pairs with irregular boundaries for deep learning model training. Stereoscopic image and depth dataset provides a unique resource for training deep learning models to handle irregular boundary stereoscopic images, which are valuable for real-world scenarios with complex shapes or occlusions. The dataset is created using monocular depth estimation, a state-of-the-art depth estimation model, and it can be used in applications like rectifying images, estimating depth, detecting objects, and autonomous driving. Overall, this paper presents a novel dataset that demonstrates its effectiveness and potential for advancing stereo vision and developing deep learning models for computer vision applications.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | stereoscopic images; depth estimation; stereo vision; monocular to stereoscopic; stereo pair generation; image-based 3D reconstruction |
Subjects: | Q Science / természettudomány > QA Mathematics / matematika > QA75 Electronic computers. Computer science / számítástechnika, számítógéptudomány T Technology / alkalmazott, műszaki tudományok > TA Engineering (General). Civil engineering (General) / általános mérnöki tudományok |
Depositing User: | Emese Kató |
Date Deposited: | 08 Aug 2024 09:15 |
Last Modified: | 08 Aug 2024 09:27 |
URI: | https://real.mtak.hu/id/eprint/202113 |
Actions (login required)
![]() |
Edit Item |