Balka, Richárd and Máthé, András (2013) Generalized Hausdorff measure for generic compact sets. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 38. pp. 797-804. ISSN 1239-629X
|
Text
1204.1100v2.pdf Available under License Creative Commons Attribution. Download (162kB) | Preview |
Official URL: https://doi.org/10.5186/aasfm.2013.3835
Abstract
Let X be a Polish space. We prove that the generic compact set K ⊆ X (in the sense of Baire category) is either finite or there is a continuous gauge function h such that 0 < Hh(K) < ∞, where Hh denotes the h-Hausdorff measure. This answers a question of C. Cabrelli, U. B. Darji, and U. M. Molter. Moreover, for every weak contraction f : K → X we have Hh (K ∩ f(K)) = 0. This is a measure theoretic analogue of a result of M. Elekes.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | CONTRACTION; GAUGE; Dimension function; Typical; Polish space; Generic compact set; Exact hausdorff dimension; |
Subjects: | Q Science / természettudomány > QA Mathematics / matematika |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 12 Aug 2024 11:25 |
Last Modified: | 12 Aug 2024 11:25 |
URI: | https://real.mtak.hu/id/eprint/202372 |
Actions (login required)
Edit Item |