REAL

Generalized Hausdorff measure for generic compact sets

Balka, Richárd and Máthé, András (2013) Generalized Hausdorff measure for generic compact sets. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 38. pp. 797-804. ISSN 1239-629X

[img]
Preview
Text
1204.1100v2.pdf
Available under License Creative Commons Attribution.

Download (162kB) | Preview

Abstract

Let X be a Polish space. We prove that the generic compact set K ⊆ X (in the sense of Baire category) is either finite or there is a continuous gauge function h such that 0 < Hh(K) < ∞, where Hh denotes the h-Hausdorff measure. This answers a question of C. Cabrelli, U. B. Darji, and U. M. Molter. Moreover, for every weak contraction f : K → X we have Hh (K ∩ f(K)) = 0. This is a measure theoretic analogue of a result of M. Elekes.

Item Type: Article
Uncontrolled Keywords: CONTRACTION; GAUGE; Dimension function; Typical; Polish space; Generic compact set; Exact hausdorff dimension;
Subjects: Q Science / természettudomány > QA Mathematics / matematika
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 12 Aug 2024 11:25
Last Modified: 12 Aug 2024 11:25
URI: https://real.mtak.hu/id/eprint/202372

Actions (login required)

Edit Item Edit Item