REAL

Terahertz emission from diamond nitrogen-vacancy centers

Kollarics, Sándor and Márkus, Bence Gábor and Kucsera, Robin and Thiering, Gergő and Gali, Ádám and Németh, Gergely and Kamarás, Katalin and Forró, László and Simon, Ferenc (2024) Terahertz emission from diamond nitrogen-vacancy centers. SCIENCE ADVANCES, 10 (22). No. eadn0616. ISSN 2375-2548

[img]
Preview
Text
sciadv.adn0616.pdf - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview
[img]
Preview
Text
sciadv.adn0616_sm.pdf - Published Version
Available under License Creative Commons Attribution.

Download (3MB) | Preview

Abstract

Coherent light sources emitting in the terahertz range are highly sought after for fundamental research and applications. Terahertz lasers rely on achieving population inversion. We demonstrate the generation of terahertz radiation using nitrogen-vacancy centers in a diamond single crystal. Population inversion is achieved through the Zeeman splitting of the S = 1 state in 15 tesla, resulting in a splitting of 0.42 terahertz, where the middle Sz = 0 sublevel is selectively pumped by visible light. To detect the terahertz radiation, we use a phase-sensitive terahertz setup, optimized for electron spin resonance (ESR) measurements. We determine the spin-lattice relaxation time up to 15 tesla using the light-induced ESR measurement, which shows the dominance of phonon-mediated relaxation and the high efficacy of the population inversion. The terahertz radiation is tunable by the magnetic field, thus these findings may lead to the next generation of tunable coherent terahertz sources.

Item Type: Article
Subjects: Q Science / természettudomány > QC Physics / fizika
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 09 Sep 2024 09:25
Last Modified: 09 Sep 2024 09:25
URI: https://real.mtak.hu/id/eprint/204462

Actions (login required)

Edit Item Edit Item