REAL

Inhibition of xanthine oxidase-catalyzed xanthine and 6-mercaptopurine oxidation by luteolin, naringenin, myricetin, ampelopsin and their conjugated metabolites

Balázs, Orsolya and Dombi, Ágnes and Zsidó, Balázs Z. and Hetényi, Csaba and Valentová, Kateřina and Vida, Róbert G. and Poór, Miklós (2023) Inhibition of xanthine oxidase-catalyzed xanthine and 6-mercaptopurine oxidation by luteolin, naringenin, myricetin, ampelopsin and their conjugated metabolites. Biomedicine & Pharmacotherapy, 167. No.-115548. ISSN 07533322

[img]
Preview
Text
Inhibition of xanthine oxidase-catalyzed xanthine and 6-mercaptopurine oxidation by luteolin, naringenin, myricetin, ampelopsin and their conjugated metabolites.pdf - Published Version
Available under License Creative Commons Attribution.

Download (5MB) | Preview

Abstract

Luteolin, naringenin, myricetin, and ampelopsin are abundant flavonoids in nature, and several dietary supplements also contain them at very high doses. After the peroral intake, flavonoids go through extensive presystemic biotransformation; therefore, typically their sulfate/glucuronic acid conjugates reach high concentrations in the circulation. Xanthine oxidase (XO) enzyme is involved in uric acid production, and it also takes part in the elimination of certain drugs (e.g., 6-mercaptopurine). The inhibitory effects of flavonoid aglycones on XO have been widely studied; however, only limited data are available regarding their sulfate and glucuronic acid conjugates. In this study, we examined the impacts of luteolin, naringenin, myricetin, ampelopsin, and their sulfate/glucuronide derivatives on XO-catalyzed xanthine and 6-mercaptopurine oxidations employing in vitro enzyme incubation assays and molecular modeling studies. Our major results/conclusions are the following: (1) Sulfate metabolites were stronger while glucuronic acid derivatives were weaker inhibitors of XO compared to the parent flavonoids. (2) Naringenin, ampelopsin, and their metabolites were weak inhibitors of the enzyme. (3) Luteolin, myricetin, and their sulfates were highly potent inhibitors of XO, and the glucuronides of luteolin showed moderate inhibitory impacts. (4) Conjugated metabolites of luteolin and myricetin can be involved in the inhibitory effects of these flavonoids on XO enzyme.

Item Type: Article
Uncontrolled Keywords: Xanthine oxidase, Luteolin, Naringenin, Myricetin, Ampelopsin, Flavonoid conjugates
Subjects: R Medicine / orvostudomány > R1 Medicine (General) / orvostudomány általában
R Medicine / orvostudomány > RM Therapeutics. Pharmacology / terápia, gyógyszertan
Depositing User: Dr. Miklós Poór
Date Deposited: 23 Sep 2024 11:07
Last Modified: 23 Sep 2024 11:07
URI: https://real.mtak.hu/id/eprint/205547

Actions (login required)

Edit Item Edit Item