REAL

G protein-coupled receptor endocytosis generates spatiotemporal bias in β-arrestin signaling

Tóth, András Dávid and Szalai, Bence and Kovács, Orsolya and Garger, Dániel and Prokop, Susanne and Soltész-Katona, Eszter and Balla, András and Inoue, Asuka and Várnai, Péter and Turu, Gábor and Hunyady, László (2024) G protein-coupled receptor endocytosis generates spatiotemporal bias in β-arrestin signaling. SCIENCE SIGNALING, 17 (842). No. eadi0934. ISSN 1945-0877

[img] Text
scisignal.adi0934-1.pdf - Published Version
Restricted to Repository staff only

Download (1MB) | Request a copy

Abstract

The stabilization of different active conformations of G protein-coupled receptors is thought to underlie the varying efficacies of biased and balanced agonists. Here, profiling the activation of signal transducers by angiotensin II type 1 receptor (AT1R) agonists revealed that the extent and kinetics of β-arrestin binding exhibited substantial ligand-dependent differences, which were lost when receptor internalization was inhibited. When AT1R endocytosis was prevented, even weak partial agonists of the β-arrestin pathway acted as full or near-full agonists, suggesting that receptor conformation did not exclusively determine β-arrestin recruitment. The ligand-dependent variance in β-arrestin translocation was much larger at endosomes than at the plasma membrane, showing that ligand efficacy in the β-arrestin pathway was spatiotemporally determined. Experimental investigations and mathematical modeling demonstrated how multiple factors concurrently shaped the effects of agonists on endosomal receptor-β-arrestin binding and thus determined the extent of functional selectivity. Ligand dissociation rate and G protein activity had particularly strong, internalization-dependent effects on the receptor-β-arrestin interaction. We also showed that endocytosis regulated the agonist efficacies of two other receptors with sustained β-arrestin binding: the V2 vasopressin receptor and a mutant β2-adrenergic receptor. In the absence of endocytosis, the agonist-dependent variance in β-arrestin2 binding was markedly diminished. Our results suggest that endocytosis determines the spatiotemporal bias in GPCR signaling and can aid in the development of more efficacious, functionally selective compounds.

Item Type: Article
Subjects: R Medicine / orvostudomány > R1 Medicine (General) / orvostudomány általában > R850-854 Experimental medicine / kisérleti orvostudomány
Depositing User: Dr. Gábor Turu
Date Deposited: 25 Sep 2024 07:12
Last Modified: 25 Sep 2024 07:12
URI: https://real.mtak.hu/id/eprint/205743

Actions (login required)

Edit Item Edit Item