Rakyta, Péter and Morse, Gregory and Nádori, Jakab and Majnay-Takács, Zita and Mencer, Oskar and Zimborás, Zoltán (2024) Highly optimized quantum circuits synthesized via data-flow engines. JOURNAL OF COMPUTATIONAL PHYSICS, 500. No. 112756.
![]() |
Text
1-s2.0-S0021999124000056-main.pdf - Published Version Restricted to Registered users only Download (1MB) | Request a copy |
Abstract
The formulation of quantum programs in terms of the fewest number of gate operations is crucial to retrieve meaningful results from the noisy quantum processors accessible these days. In this work, we demonstrate a use-case for Field Programmable Gate Array (FPGA) based data-flow engines (DFEs) to scale up variational quantum compilers to synthesize circuits up to 9-qubit programs. This gate decomposer utilizes a newly developed DFE quantum computer simulator that is designed to simulate arbitrary quantum circuit consisting of single qubit rotations and controlled two-qubit gates on FPGA chips. In our benchmark with the QISKIT package, the depth of the circuits produced by the SQUANDER package (with the DFE accelerator support) were less by 97 on average, while the fidelity of the circuits was still close to unity up to an error of ~10-4.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Quantum compilation, Quantum computer simulation, Circuit compression, Data-flow programming, FPGA |
Subjects: | Q Science / természettudomány > QA Mathematics / matematika > QA76 Computer software / programozás |
Depositing User: | Dr. Péter Rakyta |
Date Deposited: | 26 Sep 2024 08:47 |
Last Modified: | 26 Sep 2024 08:47 |
URI: | https://real.mtak.hu/id/eprint/205911 |
Actions (login required)
![]() |
Edit Item |