REAL

A Multi-Agent Deep-Reinforcement Learning Approach for Application-Agnostic Microservice Scaling

Fodor, Balázs and Jakub, Ákos and Szűcs, Gábor and Sonkoly, Balázs (2023) A Multi-Agent Deep-Reinforcement Learning Approach for Application-Agnostic Microservice Scaling. In: 2023 IEEE Virtual Conference on Communications (VCC). IEEE, Piscataway (NJ), pp. 139-144. ISBN 9798350318807

[img] Text
VCC-2023.pdf
Restricted to Repository staff only

Download (3MB) | Request a copy
Item Type: Book Section
Additional Information: Budapest University of Technology and Economics, Faculty of Electrical Engineering and Informatics, Department of Telecommunications and Media Informatics, Hungary MTA-BME Network Softwarization Research Group, Hungary HUN-REN-BME Cloud Applications Research Group, Hungary Conference code: 198413 Export Date: 22 April 2024
Subjects: Q Science / természettudomány > QA Mathematics / matematika > QA76 Computer software / programozás
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 29 Sep 2024 03:54
Last Modified: 29 Sep 2024 03:54
URI: https://real.mtak.hu/id/eprint/206366

Actions (login required)

Edit Item Edit Item