Fodor, Balázs and Jakub, Ákos and Szűcs, Gábor and Sonkoly, Balázs (2023) A Multi-Agent Deep-Reinforcement Learning Approach for Application-Agnostic Microservice Scaling. In: 2023 IEEE Virtual Conference on Communications (VCC). IEEE, Piscataway (NJ), pp. 139-144. ISBN 9798350318807
| 
              
Text
 VCC-2023.pdf Restricted to Repository staff only Download (3MB) | Request a copy  | 
          
      Official URL: https://doi.org/10.1109/VCC60689.2023.10474695
    
  
  
  | Item Type: | Book Section | 
|---|---|
| Additional Information: | Budapest University of Technology and Economics, Faculty of Electrical Engineering and Informatics, Department of Telecommunications and Media Informatics, Hungary MTA-BME Network Softwarization Research Group, Hungary HUN-REN-BME Cloud Applications Research Group, Hungary Conference code: 198413 Export Date: 22 April 2024 | 
| Subjects: | Q Science / természettudomány > QA Mathematics / matematika > QA76 Computer software / programozás | 
| SWORD Depositor: | MTMT SWORD | 
| Depositing User: | MTMT SWORD | 
| Date Deposited: | 29 Sep 2024 03:54 | 
| Last Modified: | 29 Sep 2024 03:54 | 
| URI: | https://real.mtak.hu/id/eprint/206366 | 
Actions (login required)
![]()  | 
        Edit Item | 




