REAL

The spatio-temporal segregation of GAD forms defines distinct GABA signaling functions in the developing mouse olfactory system and provides novel insights into the origin and migration of GnRH neurons.

Vastagh, Csaba and Schwirtlich, M. and Kwakowsky, A. and Erdelyi, F. and Margolis, FL. (2014) The spatio-temporal segregation of GAD forms defines distinct GABA signaling functions in the developing mouse olfactory system and provides novel insights into the origin and migration of GnRH neurons. DEVELOPMENTAL NEUROBIOLOGY, Early . Early view. ISSN 1932-8451

[img]
Preview
Text
vastagh.pdf

Download (1MB) | Preview

Abstract

GABA (gamma-aminobutyric acid) has a dual role as an inhibitory neurotransmitter in the adult central nervous system (CNS) and as a signaling molecule exerting largely excitatory actions during development. The rate-limiting step of GABA synthesis is catalyzed by two glutamic acid decarboxylase isoforms GAD65 and GAD67 co-expressed in the GABAergic neurons of the CNS. Here we report that the two GADs show virtually non-overlapping expression patterns consistent with distinct roles in the developing peripheral olfactory system. GAD65 is expressed exclusively in undifferentiated neuronal progenitors confined to the proliferative zones of the sensory vomeronasal and olfactory epithelia. In contrast GAD67 is expressed in a subregion of the non-sensory epithelium/vomeronasal organ epithelium containing the putative GnRH progenitors and GnRH neurons migrating from this region through the frontonasal mesenchyme (FNM) into the basal forebrain. Only GAD67+, but not GAD65+ cells accumulate detectable GABA. We further demonstrate that GAD67 and its embryonic splice variant EGAD concomitant with GnRH are dynamically regulated during GnRH neuronal migration in vivo and in two immortalized cell lines representing migratory (GN11) and post-migratory (GT1-7) stage GnRH neurons, respectively. Analysis of GAD65/67 single and double knock-out (KO) embryos revealed that the two GADs play complementary (inhibitory) roles in GnRH migration ultimately modulating the speed and/or direction of GnRH migration. Our results also suggest that GAD65 and GAD67/EGAD characterized by distinct subcellular localization and kinetics have disparate functions during olfactory system development mediating proliferative and migratory responses putatively through specific subcellular GABA pools. (c) 2014 Wiley Periodicals, Inc. Develop Neurobiol, 2014.

Item Type: Article
Subjects: Q Science / természettudomány > QH Natural history / természetrajz > QH301 Biology / biológia > QH3015 Molecular biology / molekuláris biológia
R Medicine / orvostudomány > R1 Medicine (General) / orvostudomány általában
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 10 Feb 2015 08:59
Last Modified: 15 Dec 2015 00:15
URI: http://real.mtak.hu/id/eprint/21470

Actions (login required)

Edit Item Edit Item