REAL

A bipartite NLS motif mediates the nuclear import of Drosophila moesin

Kovács, Zoltán and Bajusz, Csaba and Szabó, Anikó and Borkúti, Péter and Vedelek, Balázs and Benke, Reka and Lipinszki, Zoltán and Kristó, Ildikó and Vilmos, Péter (2024) A bipartite NLS motif mediates the nuclear import of Drosophila moesin. FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 12. ISSN 2296-634X

[img]
Preview
Text
KovacsZ_Abipartite.pdf - Published Version
Available under License Creative Commons Attribution.

Download (4MB) | Preview

Abstract

The ERM protein family, which consists of three closely related proteins in vertebrates, ezrin, radixin, and moesin (ERM), is an ancient and important group of cytoplasmic actin-binding and organizing proteins. With their FERM domain, ERMs bind various transmembrane proteins and anchor them to the actin cortex through their C-terminal F-actin binding domain, thus they are major regulators of actin dynamics in the cell. ERMs participate in many fundamental cellular processes, such as phagocytosis, microvilli formation, T-cell activation and tumor metastasis. We have previously shown that, besides its cytoplasmic activities, the single ERM protein of Drosophila melanogaster, moesin, is also present in the cell nucleus, where it participates in gene expression and mRNA export. Here we study the mechanism by which moesin enters the nucleus. We show that the nuclear import of moesin is an NLS-mediated, active process. The nuclear localization sequence of the moesin protein is an evolutionarily highly conserved, conventional bipartite motif located on the surface of the FERM domain. Our experiments also reveal that the nuclear import of moesin does not require PIP2 binding or protein activation, and occurs in monomeric form. We propose, that the balance between the phosphorylated and non-phosphorylated protein pools determines the degree of nuclear import of moesin.

Item Type: Article
Additional Information: Funding Agency and Grant Number: NKFIH (Hungarian National Research, Development and Innovation Office) through the National Laboratory for Biotechnology program [PD127968, LP2017-7/2017]; Hungarian Academy of Sciences Lendulet Grant; [2022-2.1.1-NL-2022-00008] Funding text: This work was supported by NKFIH (Hungarian National Research, Development and Innovation Office) through the National Laboratory for Biotechnology program, grant 2022-2.1.1-NL-2022-00008 (PV), and PD127968 (IK), and the Hungarian Academy of Sciences Lendulet Grant LP2017-7/2017 (ZL).
Uncontrolled Keywords: phosphorylation; binding; localization; identification; nucleus; structural basis; drosophila; cell biology; erm proteins; ezrin; moesin; cytoplasmic tail; erm; pip2; importin; merlin; links actin;
Subjects: Q Science / természettudomány > QH Natural history / természetrajz > QH301 Biology / biológia
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 14 Apr 2025 09:44
Last Modified: 14 Apr 2025 09:44
URI: https://real.mtak.hu/id/eprint/217746

Actions (login required)

Edit Item Edit Item