Stipsicz, András and Szabó, Zoltán (2024) Definite four-manifolds with exotic smooth structures. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024 (817). pp. 267-290. ISSN 0075-4102
|
Text
2310.16156v1.pdf - Published Version Available under License Creative Commons Attribution. Download (325kB) | Preview |
Official URL: https://doi.org/10.1515/crelle-2024-0072
Abstract
Abstract. In this paper we study smooth structures on closed oriented 4manifolds with fundamental group Z/2Z and definite intersection form. We construct infinitely many irreducible, smooth, oriented, closed, definite fourmanifolds with π1 = Z/2Z and b2 = 1, and b2 = 2. As an application, we prove that when the second Betti number b2 of a definite four-manifold with π1 = Z/2Z is positive and it admits a smooth structure, then it admits infinitely many smooth structures.
Item Type: | Article |
---|---|
Additional Information: | Export Date: 07 April 2025; Cited By: 0; Correspondence Address: A.I. Stipsicz; HUN-REN Rényi Institute of Mathematics, Budapest, Reáltanoda utca 13-15, 1053, Hungary; email: stipsicz.andras@renyi.hu |
Subjects: | Q Science / természettudomány > QA Mathematics / matematika Q Science / természettudomány > QA Mathematics / matematika > QA73 Geometry / geometria |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 08 May 2025 08:55 |
Last Modified: | 08 May 2025 08:55 |
URI: | https://real.mtak.hu/id/eprint/218622 |
Actions (login required)
![]() |
Edit Item |