REAL

Definite four-manifolds with exotic smooth structures

Stipsicz, András and Szabó, Zoltán (2024) Definite four-manifolds with exotic smooth structures. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024 (817). pp. 267-290. ISSN 0075-4102

[img]
Preview
Text
2310.16156v1.pdf - Published Version
Available under License Creative Commons Attribution.

Download (325kB) | Preview

Abstract

Abstract. In this paper we study smooth structures on closed oriented 4manifolds with fundamental group Z/2Z and definite intersection form. We construct infinitely many irreducible, smooth, oriented, closed, definite fourmanifolds with π1 = Z/2Z and b2 = 1, and b2 = 2. As an application, we prove that when the second Betti number b2 of a definite four-manifold with π1 = Z/2Z is positive and it admits a smooth structure, then it admits infinitely many smooth structures.

Item Type: Article
Additional Information: Export Date: 07 April 2025; Cited By: 0; Correspondence Address: A.I. Stipsicz; HUN-REN Rényi Institute of Mathematics, Budapest, Reáltanoda utca 13-15, 1053, Hungary; email: stipsicz.andras@renyi.hu
Subjects: Q Science / természettudomány > QA Mathematics / matematika
Q Science / természettudomány > QA Mathematics / matematika > QA73 Geometry / geometria
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 08 May 2025 08:55
Last Modified: 08 May 2025 08:55
URI: https://real.mtak.hu/id/eprint/218622

Actions (login required)

Edit Item Edit Item