REAL

Wiener index of quadrangulation graphs

Győri, Ervin and Addisu, Paulos and Chuanqi, Xiao (2021) Wiener index of quadrangulation graphs. DISCRETE APPLIED MATHEMATICS, 289. pp. 262-269. ISSN 0166-218X

[img]
Preview
Text
1-s2.0-S0166218X20305047-main.pdf - Published Version
Available under License Creative Commons Attribution.

Download (400kB) | Preview

Abstract

The Wiener index of a graph G, denoted W(G), is the sum of the distances between all non-ordered pairs of vertices in G.E. Czabarka, et al. conjectured that for a simple quadrangulation graph G on n vertices, n >= 4, W(G) <= {1/12n(3) + 7/6n-2, n 0 (mod 2), 1/12n(3) + 11/12n-1, n 1(mod 2). In this paper, we confirm this conjecture. (C) 2020 The Author(s). Published by Elsevier B.V.

Item Type: Article
Uncontrolled Keywords: Average Distance; Wiener index; Quadrangulation graphs;
Subjects: Q Science / természettudomány > QA Mathematics / matematika
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 18 Jul 2025 06:31
Last Modified: 18 Jul 2025 06:31
URI: https://real.mtak.hu/id/eprint/221238

Actions (login required)

Edit Item Edit Item