Győri, Ervin and Addisu, Paulos and Chuanqi, Xiao (2021) Wiener index of quadrangulation graphs. DISCRETE APPLIED MATHEMATICS, 289. pp. 262-269. ISSN 0166-218X
|
Text
1-s2.0-S0166218X20305047-main.pdf - Published Version Available under License Creative Commons Attribution. Download (400kB) | Preview |
Official URL: https://doi.org/10.1016/j.dam.2020.11.016
Abstract
The Wiener index of a graph G, denoted W(G), is the sum of the distances between all non-ordered pairs of vertices in G.E. Czabarka, et al. conjectured that for a simple quadrangulation graph G on n vertices, n >= 4, W(G) <= {1/12n(3) + 7/6n-2, n 0 (mod 2), 1/12n(3) + 11/12n-1, n 1(mod 2). In this paper, we confirm this conjecture. (C) 2020 The Author(s). Published by Elsevier B.V.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Average Distance; Wiener index; Quadrangulation graphs; |
Subjects: | Q Science / természettudomány > QA Mathematics / matematika |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 18 Jul 2025 06:31 |
Last Modified: | 18 Jul 2025 06:31 |
URI: | https://real.mtak.hu/id/eprint/221238 |
Actions (login required)
![]() |
Edit Item |