REAL

Efficient Computation of Cumulant Evolution and Full Counting Statistics: Application to Infinite Temperature Quantum Spin Chains

Valli, Angelo and Moca, Pascu Catalin and Werner, Miklós Antal and Kormos, Márton and Krajnik, Ziga and Prosen, Tomaz and Zaránd, Gergely Attila (2025) Efficient Computation of Cumulant Evolution and Full Counting Statistics: Application to Infinite Temperature Quantum Spin Chains. PHYSICAL REVIEW LETTERS, 135. No.-100401. ISSN 0031-9007

[img] Text
pub14.pdf - Published Version
Restricted to Repository staff only

Download (566kB)

Abstract

We propose a numerical method to efficiently compute quantum generating functions for a wide class of observables in one-dimensional quantum systems at high temperature. We obtain high-accuracy estimates for the cumulants and reconstruct full counting statistics from the quantum generating functions. We demonstrate its potential on spin S=1/2 anisotropic Heisenberg chain, where we can reach timescales hitherto inaccessible to state-of-the-art classical and quantum simulations. Our results challenge the conjecture of the Kardar-Parisi-Zhang universality for isotropic integrable quantum spin chains.

Item Type: Article
Subjects: Q Science / természettudomány > QC Physics / fizika
Q Science / természettudomány > QC Physics / fizika > QC06 Physics of condensed matter / szilárdtestfizika
Depositing User: Miklós Antal Werner
Date Deposited: 23 Sep 2025 04:47
Last Modified: 23 Sep 2025 04:47
URI: https://real.mtak.hu/id/eprint/224504

Actions (login required)

Edit Item Edit Item