REAL

Fluorine-Free Membranes Consisting of a Blend of S-PVA and PEBAX 1657 for Proton Exchange Membrane Fuel Cells: The Role of Titanium Dioxide Phosphate (TiO2PO4) Nanoparticle Fillers

Al- Mashhadani, Manhal Hameed Ibrahim and Szijjártó, Gábor and Selim, Asmaa Khaled Mohamed and Sebestyén, Zoltán and Mihály, Judith and Tompos, András (2025) Fluorine-Free Membranes Consisting of a Blend of S-PVA and PEBAX 1657 for Proton Exchange Membrane Fuel Cells: The Role of Titanium Dioxide Phosphate (TiO2PO4) Nanoparticle Fillers. MEMBRANES (BASEL), 15 (9). No. 280. ISSN 2077-0375

[img]
Preview
Text
CA-81-2025-308-310.pdf - Published Version
Available under License Creative Commons Attribution.

Download (3MB) | Preview

Abstract

Novel blend membranes containing S-PVA and PEBAX 1657 at a blend ratio of 8:2 were doped with varying amounts of titanium dioxide phosphate (TiO2PO4) as a nanoparticle filler at concentrations of 0, 3, 5, and 7 wt%. The membranes were fabricated using the solution-casting technique. The effect of the TiO2PO4 nanofiller on the polymer matrix was thoroughly investigated. Our aim was to investigate how the incorporation of TiO2PO4 nanofillers into non-fluorinated SPP-based membranes affects their structural, physicochemical, and electrochemical properties for application in fuel cells. Crystallinity of the samples was checked by means of X-ray diffraction (XRD), while FTIR was used to investigate the contact between the nanofiller and the polymers. The good compatibility resulted in strong interactions between the constituents and led to increased crystallinity of the membrane as well. Furthermore, SEM images confirmed the uniform distribution of the nanofiller. These structural features led to good thermal stability, as evidenced by thermogravimetric analysis (TGA), and good mechanical strength, as proved by tensile tests. Among the samples investigated, the highest water uptake of 51.70% was achieved on the composite membrane containing 3 wt% TiO2PO4, which also showed the highest ion exchange capacity at room temperature, reaching 1.13 meq/g. In line with these properties, among the synthesized membranes, the membrane labeled SPP 3% TiO2PO4 has the highest current density and power density, with values of 175.5 mA/cm2 and 61.52 mW/cm2, respectively.

Item Type: Article
Uncontrolled Keywords: proton exchange membrane; fuel cell; fluorine-free; sulfonated polyvinyl alcohol (S-PVA); PEBAX; titanium dioxide phosphate (TiO2PO4)
Subjects: Q Science / természettudomány > QD Chemistry / kémia
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 23 Sep 2025 12:39
Last Modified: 23 Sep 2025 12:39
URI: https://real.mtak.hu/id/eprint/224965

Actions (login required)

Edit Item Edit Item