Bakó, Barna and Berde, Éva (2006) A Harrod modell strukturális stabilitása. SZIGMA, 37 (1-2). pp. 1-32. ISSN 0039-8128
|
Text
Szigma2006_1-2_1.pdf - Published Version Download (802kB) | Preview |
Abstract
Ebben a tanulmányban megmutatjuk, hogy az adaptív várakozások segítségével megfogalmazott nemlineáris dinamikai rendszerből nyert hiperbolikus nemtriviális fixpont megfelel a harrodi instabil egyensúlyi helyzetnek. Bebizonyítjuk, hogy ez a harrodi értelemben dinamizált nemlineáris modell, a megfelelő közgazdasági feltételek mellett, strukturálisan stabil. Strukturális stabilitás mellett a tőkekoefficiensek várható és tényleges időbeli alakulását leíró függvények kis változtatása (a vektormező C1-es perturbációja) nem érinti az endogén változók kvalitatív tulajdonságait, vagyis a trajektóriáik ugyan kis mértékben megváltozhatnak, de szerkezetük megegyezik a perturbálatlanéval, s ezzel előrejelzésekre alkalmasak. Ebben az esetben érvényét veszíti az ún. Lucas vagy még pontosabban az Engel kritika. Az időparamétert átskálázza a perturbált modell, vagyis nem teljesül a topológiai konjugáció; a növekedési ütem bizonyos szintre történő emelkedése vagy csökkenése eltérő időt vehet igénybe az eredeti modellbelitől.
| Item Type: | Article |
|---|---|
| Uncontrolled Keywords: | Harrod modell, akcelerátor-elv, stacionárius egyensúlyi állapot, topológiai ekvivalencia, strukturális stabilitás, topológiai konjugáció |
| Subjects: | Q Science / természettudomány > QA Mathematics / matematika |
| SWORD Depositor: | MTMT SWORD |
| Depositing User: | Zsolt Baráth |
| Date Deposited: | 07 Nov 2025 10:54 |
| Last Modified: | 07 Nov 2025 10:54 |
| URI: | https://real.mtak.hu/id/eprint/228499 |
Actions (login required)
![]() |
Edit Item |




