REAL

Fully physical double network gel based on low hydrolysis degree poly(vinyl alcohol)

Giang, Ha Ngoc and Nguyen, Thanh Thai and Luu, Thu Thi Trang and Pham, Anh Thi Ngoc and Huynh, Tuan Nguyen Anh (2025) Fully physical double network gel based on low hydrolysis degree poly(vinyl alcohol). EXPRESS POLYMER LETTERS, 19 (5). pp. 519-530. ISSN 1788-618X

[img]
Preview
Text
EPL-0013256_article.pdf - Published Version

Download (4MB) | Preview

Abstract

Freeze-thaw (F-T) poly(vinyl alcohol) (PVA) as a soft network and ionic-crosslinked sodium carboxymethyl cellulose (CMC) as a hard network were applied to fabricate a double network (DN) gel using a one-step process. Mechanical properties of the DN gel using a high degree of hydrolysis PVA (PVA-CMC of 60-1) were significantly improved compared to that of a single network gel of PVA. The tensile strength of ~0.55 MPa and elongation at break of 179% could be achieved. The mechanical properties of PVA-poly(acrylic acid) DN gel were lower than that of PVA-CMC samples. Fourier-transformed infrared (FTIR) spectroscopy results showed less compatibility between polyacrylic acid (PAA) and PVA compared to that of CMC. The solution made from the lower hydrolysis degree PVA (PVA1788) could form a strong gel after being treated with NaOH 1 M. The FTIR result showed the disappearance of acetate groups. A large melting peak in differential scanning calorimetry (DSC) results showed high crystallinity of the hydrolyzed-PVA1788. The effect of various multivalent cations on the mechanical properties of PVA1788-CMC DN gel was performed. The properties of the samples followed the order: Fe3+<Co2+<Ni2+<Cu2+<Zn2+<Ca2+~Ba2+<Al3+. The tensile strength of DN gel fabricated using AlCl3 solution could reach 0.87 MPa, and the elongation at break was 330%.

Item Type: Article
Uncontrolled Keywords: crystallization, double network gel, poly(vinyl alcohol), mechanical properties, hydrolysis, freeze-thaw hydrogel
Subjects: T Technology / alkalmazott, műszaki tudományok > T2 Technology (General) / műszaki tudományok általában
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 10 Feb 2026 14:19
Last Modified: 10 Feb 2026 14:19
URI: https://real.mtak.hu/id/eprint/233697

Actions (login required)

Edit Item Edit Item