Bódi, Viktor and Dokuchaev, M. (2002) Group algebras whose involutory units commute. Algebra Colloquium, 9 (1). pp. 49-64. ISSN 1005-3867
| ![[img]](http://real.mtak.hu/style/images/fileicons/application_pdf.png) | PDF 1037226.pdf Restricted to Registered users only Download (227kB) | Request a copy | 
Abstract
Let K be a field of characteristic 2 and G a non-abelian locally finite 2-group. Let V(KG) be the group of units with augmentation 1 in the group algebra KG. An explicit list of groups is given, and it is proved that all involutions in V(KG) commute with each other if and only if G is isomorphic to one of the groups on this list. In particular, this property depends only on G and does not depend on K.
| Item Type: | Article | 
|---|---|
| Subjects: | Q Science / természettudomány > QA Mathematics / matematika Q Science / természettudomány > QA Mathematics / matematika > QA72 Algebra / algebra | 
| Depositing User: | Erika Bilicsi | 
| Date Deposited: | 16 Nov 2012 13:32 | 
| Last Modified: | 16 Nov 2012 13:32 | 
| URI: | http://real.mtak.hu/id/eprint/3392 | 
Actions (login required)
|  | Edit Item | 



