Bódi, Viktor and Konovalov, A. B. (2008) Integral group ring of the Mathieu simple group M(23). Communications in Algebra, 36 (7). pp. 2670-2680. ISSN 0092-7872 (print), 1532-4125 (online)
PDF
1069300.pdf Restricted to Registered users only Download (105kB) | Request a copy |
Official URL: http://www.tandfonline.com/doi/full/10.1080/009278...
Abstract
We investigate the classical Zassenhaus conjecture for the unit group of the integral group ring of Mathieu simple group M23 using the Luthar–Passi method. This work is a continuation of the research that we carried out for Mathieu groups M(11) and M(12). As a consequence, for this group we confirm Kimmerle’s conjecture on prime graphs.
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > QA Mathematics / matematika > QA72 Algebra / algebra |
Depositing User: | Erika Bilicsi |
Date Deposited: | 15 Dec 2012 07:51 |
Last Modified: | 15 Dec 2012 07:51 |
URI: | http://real.mtak.hu/id/eprint/3595 |
Actions (login required)
Edit Item |