Erdős, Paul and Harcos, Gergely and Pach, János (1999) Popular distances in 3-space. Discrete Mathematics, 200 (1-3). pp. 95-99. ISSN 0012-365X
![]() |
PDF
1074033.pdf Restricted to Registered users only Download (65kB) | Request a copy |
Official URL: http://dx.doi.org/10.1016/S0012-365X(98)00328-8
Abstract
Let m(n) denote the smallest integer m with the property that any set of n points in Euclidean 3-space has an element such that at most m other elements are equidistant from it. We have that cn(1/3) log log n less than or equal to m(n) less than or equal to n(3/5) beta(n), where c>0 is a constant and beta(n) is an extremely slowly growing function, related to the inverse of the Ackermann function.
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > QA Mathematics / matematika Q Science / természettudomány > QA Mathematics / matematika > QA71 Number theory / számelmélet |
Depositing User: | Erika Bilicsi |
Date Deposited: | 18 Dec 2012 14:35 |
Last Modified: | 18 Dec 2012 14:35 |
URI: | http://real.mtak.hu/id/eprint/3624 |
Actions (login required)
![]() |
Edit Item |