Farkas, Csaba and Kristály, Alexandru (2016) Schrödinger-Maxwell systems on non-compact Riemannian manifolds. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS (31). pp. 473-491. ISSN 1468-1218
![]() |
Text
Nonlinear-Real_World_Applications.pdf Restricted to Registered users only Download (752kB) |
Official URL: http://dx.doi.org/10.1016/j.nonrwa.2016.03.004
Abstract
In this paper we study nonlinear Schr¨odinger–Maxwell systems on n-dimensional non-compact Riemannian manifolds of Hadamard type, 3 ≤ n ≤ 5. The main difficulty resides in the lack of compactness which is recovered by exploring suitable isometric actions of the Hadamard manifolds. By combining variational arguments, some existence, uniqueness and multiplicity of isometry-invariant weak solutions are established for the Schr¨odinger–Maxwell system depending on the behavior of the nonlinear term.
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > QA Mathematics / matematika > QA73 Geometry / geometria Q Science / természettudomány > QA Mathematics / matematika > QA74 Analysis / analízis |
Depositing User: | Dr. Alexandru Kristaly |
Date Deposited: | 21 Sep 2016 07:21 |
Last Modified: | 21 Sep 2016 07:21 |
URI: | http://real.mtak.hu/id/eprint/39725 |
Actions (login required)
![]() |
Edit Item |