Blomer, Valentin and Harcos, Gergely (2008) The spectral decomposition of shifted convolution sums. Duke Mathematical Journal, 144 (2). pp. 321-339. ISSN 0012-7094
| ![[img]](http://real.mtak.hu/style/images/fileicons/text.png) | Text 1102892.pdf Restricted to Registered users only Download (236kB) | Request a copy | 
Abstract
Let pi(1), pi(2)) be cuspidal automorphic representations of PGL(2)(R) Qf conductor 1 and Hecke eigenvalues lambda(pi 1,2) (n) and let h > 0 be an integer. For any smooth compactly supported weight functions W-1,W-2 : R-x --> C and any Y > 0, aspectral decomposition of the shifted convolution sum Sigma(m+/-n=h) lambda(pi 1) (vertical bar m vertical bar)lambda(pi 2) (vertical bar n vertical bar)/root vertical bar mn vertical bar W-1(m/Y)W-2(n/Y) is obtained. As an application, aspectral decomposition of the Dirichlet series [GRAPHICS] is proved for Rs > 1/2 with polynomial growth on vertical lines in the S-aspect and uniformity in the h-aspect.
| Item Type: | Article | 
|---|---|
| Subjects: | Q Science / természettudomány > QA Mathematics / matematika | 
| Depositing User: | Erika Bilicsi | 
| Date Deposited: | 25 Feb 2013 09:16 | 
| Last Modified: | 25 Feb 2013 09:16 | 
| URI: | http://real.mtak.hu/id/eprint/4279 | 
Actions (login required)
|  | Edit Item | 



