Blomer, V. and Maga, Péter (2016) Subconvexity for sup-norms of cusp forms on PGL(n). SELECTA MATHEMATICA - NEW SERIES, 22 (3). pp. 1269-1287. ISSN 1022-1824
|
Text
subconvexity_for_sup_norms_of_cusp_forms_on_PGLn_u.pdf Download (364kB) | Preview |
Official URL: http://dx.doi.org/10.1007/s00029-015-0219-5
Abstract
Let F be an L2-normalized Hecke Maaß cusp form for Γ 0(N) ⊆ SL n(Z) with Laplace eigenvalue λF. If Ω is a compact subset of Γ 0(N) \ PGL n/ PO n, we show the bound ‖F|Ω‖∞≪ΩNελFn(n-1)/8-δ for some constant δ= δn> 0 depending only on n.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Trace formula; Sup-norms; Hecke operators; GL(n); Diophantine approximation; AMPLIFICATION |
Subjects: | Q Science / természettudomány > QA Mathematics / matematika |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 03 Jan 2017 13:08 |
Last Modified: | 03 Jan 2017 13:08 |
URI: | http://real.mtak.hu/id/eprint/44153 |
Actions (login required)
Edit Item |