REAL

Making a C6C6-free graph C4C4-free and bipartite

Győri, Ervin and Kensell, Scott and Tompkins, Casey (2016) Making a C6C6-free graph C4C4-free and bipartite. DISCRETE APPLIED MATHEMATICS, 209. pp. 133-136. ISSN 0166-218X

[img] Text
1_s2.0_S0166218X15002942_main_u.pdf - Published Version
Restricted to Registered users only

Download (356kB) | Request a copy
[img]
Preview
Text
44158.pdf - Submitted Version

Download (175kB) | Preview

Abstract

We show that every C6C6-free graph GG has a C4C4-free, bipartite subgraph with at least 3e(G)/83e(G)/8 edges. Our proof is probabilistic and uses a theorem of Füredi et al. (2006) on C6C6-free graphs.

Item Type: Article
Additional Information: Available online 13 July 2015 9th International Colloquium on Graph Theory and Combinatorics, 2014, Grenoble
Uncontrolled Keywords: 4-CYCLES; 6-cycles; Bipartite subgraphs; Extremal graphs; Graph theory
Subjects: Q Science / természettudomány > QA Mathematics / matematika
Q Science / természettudomány > QA Mathematics / matematika > QA166-QA166.245 Graphs theory / gráfelmélet
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 03 Jan 2017 08:55
Last Modified: 11 Jan 2017 01:15
URI: http://real.mtak.hu/id/eprint/44158

Actions (login required)

Edit Item Edit Item