Pyber, László and Szabó, Endre (2016) Growth in finite simple groups of Lie type. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 29. pp. 95-146. ISSN 0894-0347
![]() |
Text
growth.JAMS.pdf - Published Version Restricted to Registered users only Download (583kB) |
|
|
Text
44517.pdf - Submitted Version Download (108kB) | Preview |
Abstract
We prove that if $ L$ is a finite simple group of Lie type and $ A$ a set of generators of $ L$, then either $ A$ grows, i.e., $ \vert A^3\vert > \vert A\vert^{1+\varepsilon }$ where $ \varepsilon $ depends only on the Lie rank of $ L$, or $ A^3=L$. This implies that for simple groups of Lie type of bounded rank a well-known conjecture of Babai holds, i.e., the diameter of any Cayley graph is polylogarithmic. We also obtain new families of expanders. A generalization of our proof yields the following. Let $ A$ be a finite subset of $ SL(n,\mathbb{F})$, $ \mathbb{F}$ an arbitrary field, satisfying $ \big \vert A^3\big \vert\le \mathcal {K}\vert A\vert$. Then $ A$ can be covered by $ \mathcal {K}^m$, i.e., polynomially many, cosets of a virtually soluble subgroup of $ SL(n,\mathbb{F})$ which is normalized by $ A$, where $ m$ depends on $ n$. - See more at: http://www.ams.org/journals/jams/0000-000-00/S0894-0347-2014-00821-3/home.html#sthash.Lp65MZge.dpuf
Item Type: | Article |
---|---|
Uncontrolled Keywords: | GROWTH; Finite simple groups; ALGEBRAIC GROUPS |
Subjects: | Q Science / természettudomány > QA Mathematics / matematika > QA72 Algebra / algebra |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 04 Jan 2017 14:22 |
Last Modified: | 09 Jan 2017 08:39 |
URI: | http://real.mtak.hu/id/eprint/44517 |
Actions (login required)
![]() |
Edit Item |