Kroó, András and Szabados, József (2016) Inverse polynomial mappings and interpolation on several intervals. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 436 (2). pp. 1165-1179. ISSN 0022-247X
![]() |
Text
ms162.pdf Restricted to Registered users only Download (386kB) | Request a copy |
Official URL: http://dx.doi.org/10.1016/j.jmaa.2015.12.032
Abstract
In the present paper we will use the inverse polynomial image method in order to construct optimal nodes of interpolation on unions of disjoint intervals. We will show how this method works on those disjoint intervals which possess so-called T-polynomials, and also prove that the method becomes ineffective in the absence of T-polynomials. © 2015 Elsevier Inc.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Lebesgue constant and Lebesgue function; LAGRANGE INTERPOLATION; Inverse polynomial images; Chebyshev and T-polynomials |
Subjects: | Q Science / természettudomány > QA Mathematics / matematika Q Science / természettudomány > QA Mathematics / matematika > QA74 Analysis / analízis |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 04 Jan 2017 14:39 |
Last Modified: | 04 Jan 2017 14:39 |
URI: | http://real.mtak.hu/id/eprint/44518 |
Actions (login required)
![]() |
Edit Item |