Petrology and tectonic evolution of the Kiskunhalas-NE fractured hydrocarbon reservoir, South Hungary

Nagy, Ágnes and Tóth, Tivadar M. (2012) Petrology and tectonic evolution of the Kiskunhalas-NE fractured hydrocarbon reservoir, South Hungary. Central European Geology, 55 (1). pp. 1-22. ISSN 1788-2281


Download (2MB) | Preview


Abstract The Kiskunhalas-NE (KIHA-NE) fractured hydrocarbon reservoir is part of the structurally rather complex crystalline basement of the Great Hungarian Plain. In the course of petrologic and thermometric examinations various rock types of the investigated area have been classified and characterized. There are four basic lithological units in the area. In the lowest structural position orthogneiss is common, which according to its petrographic features is assumed to be identical to the orthogneiss body of the adjacent Jánoshalma (JH) basement high (metamorphic peak temperature T < 580 °C according to Zachar and M. Tóth 2004). The next rock unit upward is the highly mylonitized variety of the orthogneiss with textural features suggesting deformation in an extensional stress regime. In the higher section of the mylonite zone graphitic gneiss mylonite is characteristic, with a peak metamorphic T of 410±45 °C. The lithology in the shallowest position of the area is a graphitic carbonate phyllite, with a T of 375 ± 15 °C. Estimation of the deformation temperature for both mylonitic rocks results in approximately Tdef ∼ 455 °C. All data together suggest that between the top (graphitic carbonate phyllite) and the bottom (orthogneiss) of the ideal rock column there is about 200 °C peak metamorphic temperature deviation. The two extreme metamorphic blocks probably became juxtaposed along an extensional fault zone in the basement at approximately 15 km depth.

Item Type: Article
Subjects: Q Science / természettudomány > QE Geology / földtudományok
Depositing User: xBarbara xBodnár
Date Deposited: 20 Jun 2017 14:31
Last Modified: 04 Apr 2023 12:56

Actions (login required)

Edit Item Edit Item