Horváth, Gábor (2007) An improvement of a theorem of Erdős and Sárközy. Pollack Periodica, 2 (Supple). pp. 155-161. ISSN 1788-1994
![]() |
Text
pollack.2.2007.s.14.pdf Restricted to Repository staff only until 31 December 2027. Download (153kB) |
Abstract
Let a <sub>1</sub> < a <sub>2</sub> < … be an infinite sequence of positive integers and denote by R <sub>2</sub> ( n ) the number of solutions of n = a <sub>i</sub> + a <sub>j</sub> . P. Erdős and A. Sárközy proved that if g ( n ) is a monotonically increasing arithmetic function with g ( n ) → +∞ and g ( n ) = o ( n (log n ) <sup>−2</sup> ) then | R <sub>2</sub> ( n ) − g ( n )| = o (√ g ( n )) cannot hold. We will show that for any ɛ > 0, the inequality | R <sub>2</sub> ( n ) − g ( n )| ≤ (1 − ɛ )√ g ( n ) cannot hold from a certain point on.
Item Type: | Article |
---|---|
Subjects: | T Technology / alkalmazott, műszaki tudományok > TA Engineering (General). Civil engineering (General) / általános mérnöki tudományok |
Depositing User: | Erika Bilicsi |
Date Deposited: | 14 Oct 2017 12:51 |
Last Modified: | 14 Oct 2017 12:51 |
URI: | http://real.mtak.hu/id/eprint/65700 |
Actions (login required)
![]() |
Edit Item |