REAL

Dopamine-induced programmed cell death is associated with cytochrome c release and caspase-3 activation in snail salivary gland cells

Pirger, Zsolt and Rácz, Boglárka and Kiss, Tibor (2009) Dopamine-induced programmed cell death is associated with cytochrome c release and caspase-3 activation in snail salivary gland cells. BIOLOGY OF THE CELL, 101 (2). pp. 105-116. ISSN 0248-4900

[img] Text
1197165.pdf
Restricted to Registered users only

Download (947kB) | Request a copy

Abstract

Background information. PCD (programmed cell death) is a common mechanism to remove unwanted and excessive cells from organisms. In several exocrine cell types, PCD mode of release of secretory products has been reported. The molecular mechanism of the release, however, is largely unknown. Our aim was to study the molecular mechanism of saliva release from cystic cells, the specific cell type of snail SGs (salivary glands). Results. SG cells in active feeding animals revealed multiple morphological changes characteristic of PCD. Nerve stimulation and DA (dopamine) increased the number of TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling)-positive cells both in inactive and feeding animals. The DA-induced PCD was prevented by TEA (tetraethylammonium chloride) and eticlopricle, emphasizing the role of K channels and D2 receptors in the PCD of cystic cells. DA enhanced cyto-c (cytochrome c) translocation into the cytosol and methyl-beta-cyclodextrin prevented it, suggesting apoptosome formation and ceramide involvement in the PCD linking of the surface DA receptor to mitochondria. Western blot analysis revealed that the release of cyto-c was under the control of Bcl-2 and Bad. DA also increased the active caspase-3 in gland cells while D2 receptor antagonists and TEA attenuated it. Conclusion. Our results provide evidence for a type of transmitter-mediated pathway that regulates the PCD of secretory cells in a mitochondrial-caspase-depenclent manner. The activation of specific molecules, such as K channels, DA receptors, cyto-c, ceramide, Bcl-2 proteins and caspase-3, but not caspase-8, was demonstrated in cells involved in the DA-induced PCD, suggesting that PCD is a physiological method for the release of saliva from SG cells.

Item Type: Article
Subjects: Q Science / természettudomány > QH Natural history / természetrajz > QH301 Biology / biológia
Q Science / természettudomány > QH Natural history / természetrajz > QH301 Biology / biológia > QH3015 Molecular biology / molekuláris biológia
R Medicine / orvostudomány > RC Internal medicine / belgyógyászat > RC0321 Neuroscience. Biological psychiatry. Neuropsychiatry / idegkórtan, neurológia, pszichiátria
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 22 Oct 2013 14:17
Last Modified: 22 Oct 2013 14:17
URI: http://real.mtak.hu/id/eprint/6970

Actions (login required)

Edit Item Edit Item