Ergemlidze, Beka and Győri, Ervin and Methuku, Abhishek (2017) 3-uniform hypergraphs and linear cycles. ELECTRONIC NOTES IN DISCRETE MATHEMATICS, 61. pp. 391-394. ISSN 1571-0653
|
Text
1609.03934v2.pdf Download (232kB) | Preview |
Abstract
We continue the work of Gyárfás, Győri and Simonovits [Gyárfás, A., E. Győri and M. Simonovits, On 3-uniform hypergraphs without linear cycles. Journal of Combinatorics 7 (2016), 205–216], who proved that if a 3-uniform hypergraph H with n vertices has no linear cycles, then its independence number α≥[Formula presented]. The hypergraph consisting of vertex disjoint copies of complete hypergraphs K5 3 shows that equality can hold. They asked whether α can be improved if we exclude K5 3 as a subhypergraph and whether such a hypergraph is 2-colorable. We answer these questions affirmatively. Namely, we prove that if a 3-uniform linear-cycle-free hypergraph H, doesn't contain K5 3 as a subhypergraph, then it is 2-colorable. This result clearly implies that α≥⌈[Formula presented]⌉. We show that this bound is sharp. Gyárfás, Győri and Simonovits also proved that a linear-cycle-free 3-uniform hypergraph contains a vertex of strong degree at most 2. In this context, we show that a linear-cycle-free 3-uniform hypergraph has a vertex of degree at most n−2 when n≥10. © 2017 Elsevier B.V.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Loose cycle; linear cycle; Independence number |
Subjects: | Q Science / természettudomány > QA Mathematics / matematika > QA166-QA166.245 Graphs theory / gráfelmélet |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 13 Dec 2017 14:17 |
Last Modified: | 13 Dec 2017 14:17 |
URI: | http://real.mtak.hu/id/eprint/71046 |
Actions (login required)
Edit Item |