REAL

Note on k-planar crossing numbers

Pach, János and Székely, László A. and Tóth, Csaba D. and Tóth, Géza (2018) Note on k-planar crossing numbers. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 68. pp. 2-6. ISSN 0925-7721

[img]
Preview
Text
1611.05746v1.pdf

Download (129kB) | Preview

Abstract

The crossing number CR(G) of a graph G=(V,E) is the smallest number of edge crossings over all drawings of G in the plane. For any k≥1, the k-planar crossing number of G, CRk(G), is defined as the minimum of CR(G0)+CR(G1)+…+CR(Gk−1) over all graphs G0,G1,…,Gk−1 with ∪i=0 k−1Gi=G. It is shown that for every k≥1, we have CRk(G)≤([Formula presented]−[Formula presented])CR(G). This bound does not remain true if we replace the constant [Formula presented]−[Formula presented] by any number smaller than [Formula presented]. Some of the results extend to the rectilinear variants of the k-planar crossing number. © 2017 Elsevier B.V.

Item Type: Article
Uncontrolled Keywords: Graph theory; Graph G; Graph decompositions; Geometric graphs; Edge crossing; Computational geometry; Applications; Graph decomposition; Geometric graph; Crossing number
Subjects: Q Science / természettudomány > QA Mathematics / matematika
Q Science / természettudomány > QA Mathematics / matematika > QA166-QA166.245 Graphs theory / gráfelmélet
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 05 Feb 2018 12:55
Last Modified: 05 Feb 2018 12:55
URI: http://real.mtak.hu/id/eprint/73903

Actions (login required)

Edit Item Edit Item