Gulyás, Gergő and Radvanszki, Glória and Matuska, Rita and Balla, András and Hunyady, László and Várnai, Péter (2017) Plasma membrane phosphatidylinositol 4-phosphate and 4,5-bisphosphate determine the distribution and function of K-Ras4B but not H-Ras proteins. JOURNAL OF BIOLOGICAL CHEMISTRY, 292 (46). pp. 18862-18877. ISSN 0021-9258
|
Text
JBC_2017_806679v2_Varnai_u.pdf Download (1MB) | Preview |
Abstract
Plasma membrane (PM) localization of Ras proteins is crucial for transmitting signals upon mitogen stimulation. Posttranslational lipid modification of Ras proteins plays an important role in their recruitment to the PM. Electrostatic interactions between negatively charged PM phospholipids and basic amino acids found in K-Ras4B (K-Ras) but not in H-Ras are important for permanent K-Ras localization to the PM. Here, we investigated how acute depletion of negatively charged PM polyphosphoinositides (PPIns) from the PM alters the intracellular distribution and activity of K- and H-Ras proteins. PPIns depletion from the PM was achieved either by agonist-induced activation of phospholipase C beta or with a rapamycin-inducible system in which various PI phosphatases were recruited to the PM. Redistribution of the two Ras proteins was monitored with confocal microscopy or with a recently developed bioluminescent energy transfer (BRET)-based approach involving fusion of the Ras C-terminal targeting sequences or the entire Ras proteins to Venus fluorescent protein. We found that PM PPIns depletion caused rapid translocation of K-Ras but not H-Ras from the PM to the Golgi. PM depletion of either phosphatidylinositol 4-phosphate (PtdIns4P) or PtdIns(4,5)P2, but not PtdIns(3,4,5)P3, was sufficient to evoke K-Ras translocation. This effect was diminished by deltarasine, an inhibitor of the Ras-phosphodiesterase interaction, or by simultaneous depletion of the Golgi PtdIns4P. The PPIns depletion decreased incorporation of [3H]-Leucine in K-Ras-expressing cells, suggesting that Golgi-localized K-Ras is not as signaling competent as its PM-bound form. We conclude that PPIns in the PM are important regulators of K-Ras mediated signals.
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > QH Natural history / természetrajz > QH301 Biology / biológia > QH3011 Biochemistry / biokémia |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 15 Feb 2018 11:29 |
Last Modified: | 15 Feb 2018 11:29 |
URI: | http://real.mtak.hu/id/eprint/74605 |
Actions (login required)
Edit Item |