Cavallo, Alberto (2015) On the slice genus and some concordance invariants of links. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 24 (4). pp. 1-22. ISSN 0218-2165
|
Text
1403.1153v2.pdf Download (2MB) | Preview |
Official URL: https://doi.org/10.1142/S0218216515500212
Abstract
We introduce a new class of links for which we give a lower bound for the slice genus g∗, using the generalized Rasmussen invariant. We show that this bound, in some cases, allows one to compute g∗ exactly; in particular, we compute g∗ for torus links. We also study another link invariant: the strong slice genus g∗. Studying the behaviour of a specific type of cobordisms in Lee homology, a lower bound for g∗ is also given.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | torus links; slice genus; Rasmussen invariant; Lee homology; concordance invariants |
Subjects: | Q Science / természettudomány > QA Mathematics / matematika |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 26 Mar 2018 08:31 |
Last Modified: | 26 Mar 2018 08:44 |
URI: | http://real.mtak.hu/id/eprint/78816 |
Actions (login required)
![]() |
Edit Item |