REAL

Improved bounds on the supremum of autoconvolutions

Matolcsi, Máté and Vinuesa, Carlos (2010) Improved bounds on the supremum of autoconvolutions. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 372 (2). pp. 439-447. ISSN 0022-247X

[img] Text
0907.1379.pdf
Restricted to Repository staff only

Download (344kB) | Request a copy

Abstract

We give an improvement of the best known lower bound for the supremum of autoconvolutions of nonnegative functions supported in a compact interval. Also, by means of explicit examples we disprove a long standing natural conjecture of Schinzel and Schmidt concerning the extremal function for such autoconvolutions.

Item Type: Article
Uncontrolled Keywords: Generalized Sidon sets; B2[g]-sets; Autoconvolution of nonnegative functions; NUMBER; SQUARES; SEQUENCES; Polynomials; SETS; Generalized Sidon sets; B(2)[g]-sets
Subjects: Q Science / természettudomány > QA Mathematics / matematika
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 09 Dec 2013 15:25
Last Modified: 09 Dec 2013 15:25
URI: http://real.mtak.hu/id/eprint/7892

Actions (login required)

Edit Item Edit Item