Matolcsi, Máté and Vinuesa, Carlos (2010) Improved bounds on the supremum of autoconvolutions. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 372 (2). pp. 439-447. ISSN 0022-247X
Text
0907.1379.pdf Restricted to Repository staff only Download (344kB) | Request a copy |
Official URL: http://www.sciencedirect.com/science/article/pii/S...
Abstract
We give an improvement of the best known lower bound for the supremum of autoconvolutions of nonnegative functions supported in a compact interval. Also, by means of explicit examples we disprove a long standing natural conjecture of Schinzel and Schmidt concerning the extremal function for such autoconvolutions.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Generalized Sidon sets; B2[g]-sets; Autoconvolution of nonnegative functions; NUMBER; SQUARES; SEQUENCES; Polynomials; SETS; Generalized Sidon sets; B(2)[g]-sets |
Subjects: | Q Science / természettudomány > QA Mathematics / matematika |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 09 Dec 2013 15:25 |
Last Modified: | 09 Dec 2013 15:25 |
URI: | http://real.mtak.hu/id/eprint/7892 |
Actions (login required)
Edit Item |