Halmschlager, Andrea and Matolcsi, Máté (2005) Minimal positive realizations for a class of transfer functions. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 52 (4). pp. 177-180. ISSN 1057-7130
| 
 | Text minpos.pdf Download (109kB) | Preview | 
Abstract
It is a standard result in linear-system theory that an nth-order rational transfer function of a single-input single-output system always admits a realization of order n. In some applications, however, one is restricted to realizations with nonnegative entries (i.e. a positive system), and it is known that this restriction may force the order N of realizations to be strictly larger than n. In this brief we present a class of transfer functions where positive realizations of order n do exist. With the help of our result we give improvements on some earlier results in positive-system theory.
| Item Type: | Article | 
|---|---|
| Uncontrolled Keywords: | Circuit theory; Positive system theory; Minimal positive realizations; Linear system theory; VECTORS; Transfer functions; Theorem proving; Matrix algebra; Markov processes; Linear systems; estimation; Algorithms; Positive linear systems; Minimal realizations; Discrete time filtering | 
| Subjects: | Q Science / természettudomány > QA Mathematics / matematika | 
| SWORD Depositor: | MTMT SWORD | 
| Depositing User: | MTMT SWORD | 
| Date Deposited: | 10 Dec 2013 14:20 | 
| Last Modified: | 16 Dec 2013 05:24 | 
| URI: | http://real.mtak.hu/id/eprint/7959 | 
Actions (login required)
|  | Edit Item | 



