REAL

A simple method for the simulation of steady-state diffusion through membranes: pressure-tuned, boundary-driven molecular dynamics

Ható, Zoltán and Kaviczky, Ákos and Kristóf, Tamás (2016) A simple method for the simulation of steady-state diffusion through membranes: pressure-tuned, boundary-driven molecular dynamics. Molecular Simulation, 42 (1). pp. 71-80.

[img]
Preview
Text
Molecular Simulation, 42, 71-80, 2015.pdf

Download (1MB) | Preview

Abstract

We present a novel molecular dynamics-based simulation technique for investigating gas transport through membranes. In our simulations, the main control parameters are the partial pressure for the components on the input side of the membrane and the total pressure on the output side. The essential point of our scheme is that this pressure control should be realised by adjusting the particle numbers in the input and output side control cells indirectly. Although this perturbation is applied sufficiently far from the membrane, the bulk-phase properties are well controlled in a simulation cell of common size. Numerical results are given for silicalite-1 membrane with permeating CH4, CO2, H2 and N2 gases as well as with binary mixtures of CO2 with the other three components. To describe interactions between particles, we used the simple shifted and cut Lennard–Jones potential with parameters available in the literature. It is expected that the proposed technique can be applied to several other types of membranes and transported fluids in order to support the development of a deeper understanding of separation processes.

Item Type: Article
Subjects: Q Science / természettudomány > QC Physics / fizika > QC03 Heat. Thermodinamics / hőtan, termodinamika
Q Science / természettudomány > QC Physics / fizika > QC06 Physics of condensed matter / szilárdtestfizika
Q Science / természettudomány > QD Chemistry / kémia > QD02 Physical chemistry / fizikai kémia
Depositing User: Professor Dezső Boda
Date Deposited: 21 May 2018 04:20
Last Modified: 21 May 2018 04:20
URI: http://real.mtak.hu/id/eprint/79899

Actions (login required)

Edit Item Edit Item