Gyárfás, András and Ruszinkó, Miklós and Sárközy, Gábor and Schelp, Richard H. (2011) Long rainbow cycles in proper edge-colorings of complete graphs. AUSTRALASIAN JOURNAL OF COMBINATORICS, 50. pp. 45-53. ISSN 1034-4942
|
Text
Long rainbow cycles in proper edge-colorings of complete graphs.pdf Download (86kB) | Preview |
Official URL: http://ajc.maths.uq.edu.au/pdf/50/ajc_v50_p045.pdf
Abstract
We show that any properly edge-colored Kn contains a rainbow cycle with at least (4=7 − o(1))n edges. This improves the lower bound of n=2 − 1 proved in [1].
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > QA Mathematics / matematika |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 11 Dec 2013 10:50 |
Last Modified: | 12 Dec 2013 08:15 |
URI: | http://real.mtak.hu/id/eprint/7999 |
Actions (login required)
![]() |
Edit Item |