Ágg, Bence and Baranyai, Tamás and Makkos, András and Vető, Borbála and Faragó, Nóra and Zvara, Ágnes and Giricz, Zoltán and Veres, Dániel V. and Csermely, Péter and Arányi, Tamás and Puskás, László G. and Varga, Zoltán V. and Ferdinandy, Péter (2018) MicroRNA interactome analysis predicts post-transcriptional regulation of ADRB2 and PPP3R1 in the hypercholesterolemic myocardium. SCIENTIFIC REPORTS, 8. pp. 1-11. ISSN 2045-2322
|
Text
s41598_018_27740_3_u.pdf Download (1MB) | Preview |
Abstract
Little is known about the molecular mechanism including microRNAs (miRNA) in hypercholesterolemia-induced cardiac dysfunction. We aimed to explore novel hypercholesterolemia-induced pathway alterations in the heart by an unbiased approach based on miRNA omics, target prediction and validation. With miRNA microarray we identified forty-seven upregulated and ten downregulated miRNAs in hypercholesterolemic rat hearts compared to the normocholesterolemic group. Eleven mRNAs with at least 4 interacting upregulated miRNAs were selected by a network theoretical approach, out of which 3 mRNAs (beta-2 adrenergic receptor [Adrb2], calcineurin B type 1 [Ppp3r1] and calcium/calmodulin-dependent serine protein kinase [Cask]) were validated with qRT-PCR and Western blot. In hypercholesterolemic hearts, the expression of Adrb2 mRNA was significantly decreased. ADRB2 and PPP3R1 protein were significantly downregulated in hypercholesterolemic hearts. The direct interaction of Adrb2 with upregulated miRNAs was demonstrated by luciferase reporter assay. Gene ontology analysis revealed that the majority of the predicted mRNA changes may contribute to the hypercholesterolemia-induced cardiac dysfunction. In summary, the present unbiased target prediction approach based on global cardiac miRNA expression profiling revealed for the first time in the literature that both the mRNA and protein product of Adrb2 and PPP3R1 protein are decreased in the hypercholesterolemic heart.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Lipoproteins; PEROXYNITRITE; IDENTIFICATION; DISEASE; TARGET; RAT HEARTS; MESSENGER-RNA; CARDIAC DYSFUNCTION; BETA(2)-ADRENERGIC RECEPTOR; CHOLESTEROL-RICH DIET |
Subjects: | R Medicine / orvostudomány > RC Internal medicine / belgyógyászat |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 30 Jul 2018 06:30 |
Last Modified: | 30 Jul 2018 06:30 |
URI: | http://real.mtak.hu/id/eprint/82451 |
Actions (login required)
![]() |
Edit Item |