Barczy, Mátyás and Ben Alaya, Mohamed and Kebaier, Ahmed and Pap, Gyula (2019) Asymptotic behavior of maximum likelihood estimators for a jump-type Heston model. Journal of Statistical Planning and Inference, 198. pp. 139-164.
| 
 | Text Barczy_Ben-Alaya_Kebaier_Pap_2019_arxiv.pdf Download (759kB) | Preview | |
| ![[img]](https://real.mtak.hu/style/images/fileicons/text.png) | Text Barczy_Ben-Alaya_Kebaier_Pap_2019.pdf - Published Version Restricted to Repository staff only Download (748kB) | Request a copy | 
Abstract
We study asymptotic properties of maximum likelihood estimators of drift parameters for a jump-type Heston model based on continuous time observations, where the jump process can be any purely non-Gaussian Lévy process of not necessarily bounded variation with a Lévy measure concentrated on (−1,∞). We prove strong consistency and asymptotic normality for all admissible parameter values except one, where we show only weak consistency and mixed normal (but non-normal) asymptotic behavior. It turns out that the volatility of the price process is a measurable function of the price process. We also present some numerical illustrations to confirm our results.
| Item Type: | Article | 
|---|---|
| Uncontrolled Keywords: | jump-type Heston model; maximum likelihood estimator | 
| Subjects: | Q Science / természettudomány > QA Mathematics / matematika | 
| Depositing User: | Dr Mátyás Barczy | 
| Date Deposited: | 13 Sep 2018 08:55 | 
| Last Modified: | 07 Oct 2025 06:47 | 
| URI: | https://real.mtak.hu/id/eprint/83839 | 
Actions (login required)
|  | Edit Item | 



