REAL

Ages of Records in Random Walks

Szabó, Réka and Vető, Bálint (2016) Ages of Records in Random Walks. JOURNAL OF STATISTICAL PHYSICS. ISSN 0022-4715

[img] Text
Szabó-Vető2016_Article_AgesOfRecordsInRandomWalks.pdf
Restricted to Repository staff only

Download (524kB)
[img]
Preview
Text
1510.01152.pdf - Submitted Version

Download (236kB) | Preview

Abstract

We consider random walks with continuous and symmetric step distributions. We prove universal asymptotics for the average proportion of the age of the kth longest lasting record for k = 1, 2,... and for the probability that the record of the kth longest age is broken at step n. Due to the relation to the Chinese restaurant process, the ranked sequence of proportions of ages converges to the Poisson-Dirichlet distribution.

Item Type: Article
Subjects: Q Science / természettudomány > QA Mathematics / matematika
Depositing User: Balint Veto
Date Deposited: 28 Sep 2018 13:01
Last Modified: 28 Sep 2018 13:06
URI: http://real.mtak.hu/id/eprint/85883

Actions (login required)

Edit Item Edit Item