Szabó, Réka and Vető, Bálint (2016) Ages of Records in Random Walks. JOURNAL OF STATISTICAL PHYSICS. ISSN 0022-4715
Text
Szabó-Vető2016_Article_AgesOfRecordsInRandomWalks.pdf Restricted to Repository staff only Download (524kB) |
||
|
Text
1510.01152.pdf - Submitted Version Download (236kB) | Preview |
Abstract
We consider random walks with continuous and symmetric step distributions. We prove universal asymptotics for the average proportion of the age of the kth longest lasting record for k = 1, 2,... and for the probability that the record of the kth longest age is broken at step n. Due to the relation to the Chinese restaurant process, the ranked sequence of proportions of ages converges to the Poisson-Dirichlet distribution.
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > QA Mathematics / matematika |
Depositing User: | Balint Veto |
Date Deposited: | 28 Sep 2018 13:01 |
Last Modified: | 28 Sep 2018 13:06 |
URI: | http://real.mtak.hu/id/eprint/85883 |
Actions (login required)
Edit Item |