Bhowmik, G. and Ruzsa, Z. Imre (2018) Average Goldbach and the Quasi-Riemann Hypothesis. ANALYSIS MATHEMATICA, 44 (1). pp. 51-56. ISSN 0133-3852
| 
 | Text 1711.06442v1.pdf Download (96kB) | Preview | 
      Official URL: https://doi.org/10.1007/s10476-018-0105-4
    
  
  
    Abstract
We prove that a good average order on the Goldbach generating function implies that the real parts of the non-trivial zeros of the Riemann zeta function are strictly less than 1. This together with existing results establishes an equivalence between such asymptotics and the Riemann Hypothesis.
| Item Type: | Article | 
|---|---|
| Uncontrolled Keywords: | NUMBER; Primes; Riemann hypothesis; Goldbach problem; Chebyshev function; | 
| Subjects: | Q Science / természettudomány > QA Mathematics / matematika | 
| SWORD Depositor: | MTMT SWORD | 
| Depositing User: | MTMT SWORD | 
| Date Deposited: | 14 Jan 2019 08:30 | 
| Last Modified: | 14 Jan 2019 08:30 | 
| URI: | http://real.mtak.hu/id/eprint/89836 | 
Actions (login required)
|  | Edit Item | 



