Ergemlidze, Beka and Győri, Ervin and Methuku, Abhishek (2019) Turán Number of an Induced Complete Bipartite Graph Plus an Odd Cycle. COMBINATORICS PROBABILITY AND COMPUTING, 28 (2). pp. 241-252. ISSN 0963-5483
|
Text
170706482v1.pdf Available under License Creative Commons Attribution. Download (161kB) | Preview |
Official URL: https://doi.org/10.1017/S0963548318000354
Abstract
Let k ⩾ 2 be an integer. We show that if s = 2 and t ⩾ 2, or s = t = 3, then the maximum possible number of edges in a C2k+1-free graph containing no induced copy of Ks,t is asymptotically equal to (t − s + 1)1/s(n/2)2−1/s except when k = s = t = 2. This strengthens a result of Allen, Keevash, Sudakov and Verstraëte [1], and answers a question of Loh, Tait, Timmons and Zhou [14]. Copyright © Cambridge University Press 2018
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Probability; Computer science; Graph theory; Free graphs; Odd cycle; Complete bipartite graphs; |
Subjects: | Q Science / természettudomány > QA Mathematics / matematika > QA166-QA166.245 Graphs theory / gráfelmélet |
SWORD Depositor: | MTMT SWORD |
Depositing User: | MTMT SWORD |
Date Deposited: | 05 Sep 2019 07:06 |
Last Modified: | 17 Apr 2023 13:35 |
URI: | http://real.mtak.hu/id/eprint/98608 |
Actions (login required)
Edit Item |