REAL

Turán Number of an Induced Complete Bipartite Graph Plus an Odd Cycle

Ergemlidze, Beka and Győri, Ervin and Methuku, Abhishek (2019) Turán Number of an Induced Complete Bipartite Graph Plus an Odd Cycle. COMBINATORICS PROBABILITY AND COMPUTING, 28 (2). pp. 241-252. ISSN 0963-5483

[img]
Preview
Text
170706482v1.pdf
Available under License Creative Commons Attribution.

Download (161kB) | Preview

Abstract

Let k ⩾ 2 be an integer. We show that if s = 2 and t ⩾ 2, or s = t = 3, then the maximum possible number of edges in a C2k+1-free graph containing no induced copy of Ks,t is asymptotically equal to (t − s + 1)1/s(n/2)2−1/s except when k = s = t = 2. This strengthens a result of Allen, Keevash, Sudakov and Verstraëte [1], and answers a question of Loh, Tait, Timmons and Zhou [14]. Copyright © Cambridge University Press 2018

Item Type: Article
Uncontrolled Keywords: Probability; Computer science; Graph theory; Free graphs; Odd cycle; Complete bipartite graphs;
Subjects: Q Science / természettudomány > QA Mathematics / matematika > QA166-QA166.245 Graphs theory / gráfelmélet
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 05 Sep 2019 07:06
Last Modified: 17 Apr 2023 13:35
URI: http://real.mtak.hu/id/eprint/98608

Actions (login required)

Edit Item Edit Item