Gyarmati, Katalin and Konyagin, Sergei and Sárközy, András (2013) On the reducibility of large sets of residues modulo p. Journal of Number Theory, 133 (7). pp. 23742397. ISSN 0022314X

Text
aplusb7.pdf Download (248kB)  Preview 
Abstract
It is shown that if p>2 and C is a subset of $F_p$ with $C \ge pC_1\frac{p}{\log p}$ then there are $A\in F_p$, $B\in F_p$ with $C=A+B$, $A\ge 2$, $B\ge 2$. On the other hand, for every prime p there is a subset $C\subset F_p$ with $ C> pC_2\frac{\log\log p}{(\log p)^{1/2}}$ such that there are no $A, B$ with these properties.
Item Type:  Article 

Subjects:  Q Science / természettudomány > QA Mathematics / matematika Q Science / természettudomány > QA Mathematics / matematika > QA71 Number theory / számelmélet 
Depositing User:  Katalin Gyarmati 
Date Deposited:  19 Sep 2014 07:11 
Last Modified:  12 May 2016 12:11 
URI:  http://real.mtak.hu/id/eprint/15372 
Actions (login required)
Edit Item 