Repository of the Academy's Library

Extremalis problémák többváltozós és súlyozott polinomokra = Extremal problems for multivariate and weighted polynomials

Kroó, András and Szabados, József (2009) Extremalis problémák többváltozós és súlyozott polinomokra = Extremal problems for multivariate and weighted polynomials. Project Report. OTKA.

[img]
Preview
PDF
49196_ZJ1.pdf

Download (36Kb)

Abstract

Jól ismert hogy a többváltozós polinomok sűrűek a d-dimenziós kompakt halmazokon folytonos függvények terében. A többváltozós polinomok egy fontos részhalmaza a homogén polinomok osztálya. Igy természetesen felmerül az a kérdés, hogy igaz-e a sűrüség a homogén polinomokra? Egy ismert sejtés szerint a konvex felületeken folytonos függvények megközelíthetőek két homogén polinom összegével. A pályázat keretében két fontos új eredmény született 1) igazoltuk a sejtést tetszőleges sima ( egyértelmü támasz sikkal rendelkező) konvex testeken egyenletes normában 2) igazoltuk a sejtést teljes általánosságban Lp normában Ezen kivül általánosított Freud súlyokra vonatkozó polinom-approximációs problémákat vizsgáltunk. Itt az általánosítás azt jelenti, hogy az eredeti Freud súlyokat megszorozzuk olyan un. általánosított polinomokkal, amelyeknek csak valós gyökeik vannak. A klasszikus polinom-egyenlotlenségek analogonjait, valamint direkt és fordított approximációs tételeket bizonyítottunk. Hibabecsléseket adtunk függvények súlyozott approximációjára Freud súlyok esetén, olyan egész függvényekkel történo approximáció esetén, amelyek véges, ill. végtelen sok pontban interpolálják a függvényt. Ezek a hibabecslések olyan súlyozott folytonossági modulusokat tartalmaznak, amelyeknél a polinom-suruség nem mindig garantált | It is well known that multivariate polynomials are dense in the space of continuous functions on compact subsets of the d-dimensional space. An important family of multivariate polynomials is the space of all homogeneous polynomials. Thus it is natural to ask if the density holds for homogeneous polynomials. It has been conjectured that any function continuous on a convex surface can be approximated by sums of two homogeneous polynomials. In the framework of the present project the above conjecture was verified in two new important cases: 1) the conjecture was verified for uniform norm on arbitrary regular convex bodies, i.e., in case when the body possesses a unique tangent plane at each point of its boundary 2) the conjecture was verified in full generality in the Lp norm We also considered polynomial approximation problems on the real line with generalized Freud weights. The generalization means multiplying these weights by so-called generalized polynomials which have real roots only. Analogues of classical polynomial inequalities, as well as direct and converse approximation theorems were proved. We gave error estimates for the weighted approximation of functions with Freud-type weights, by entire functions interpolating at finitely or infinitely many points on the real line. The error estimates involve weighted moduli of continuity corresponding to general Freud-type weights for which the density of polynomials is not always guaranteed.

Item Type: Monograph (Project Report)
Uncontrolled Keywords: Matematika
Subjects: Q Science / természettudomány > QA Mathematics / matematika
Q Science / természettudomány > QA Mathematics / matematika > QA74 Analysis / analízis
Depositing User: Mr. Andras Holl
Date Deposited: 08 May 2009 11:00
Last Modified: 30 Nov 2010 15:29
URI: http://real.mtak.hu/id/eprint/1936

Actions (login required)

View Item View Item