Lángi, Zsolt and Naszódi, Márton (2015) On multiple Borsuk numbers in normed spaces. STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA. ISSN 00816906 (Submitted)

Text
multiNormedBorsuk20131126.pdf Download (323kB)  Preview 
Abstract
Hujter and Lángi defined the kfold Borsuk number of a set S in Euclidean nspace of diameter d > 0 as the smallest cardinality of a family F of subsets of S, of diameters strictly less than d, such that every point of S belongs to at least k members of F. We investigate whether a kfold Borsuk covering of a set S in a �nite dimensional real normed space can be extended to a completion of S. Furthermore, we determine the kfold Borsuk number of sets in not angled normed planes, and give a partial characterization for sets in angled planes.
Item Type:  Article 

Subjects:  Q Science / természettudomány > QA Mathematics / matematika > QA73 Geometry / geometria 
Depositing User:  Dr. Zsolt Lángi 
Date Deposited:  11 Sep 2015 11:43 
Last Modified:  11 Sep 2015 11:43 
URI:  http://real.mtak.hu/id/eprint/26389 
Actions (login required)
Edit Item 