Lángi, Zsolt and Naszódi, Márton (2015) On multiple Borsuk numbers in normed spaces. STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA. ISSN 0081-6906 (Submitted)
|
Text
multiNormedBorsuk20131126.pdf Download (323kB) | Preview |
Abstract
Hujter and Lángi defined the k-fold Borsuk number of a set S in Euclidean n-space of diameter d > 0 as the smallest cardinality of a family F of subsets of S, of diameters strictly less than d, such that every point of S belongs to at least k members of F. We investigate whether a k-fold Borsuk covering of a set S in a �nite dimensional real normed space can be extended to a completion of S. Furthermore, we determine the k-fold Borsuk number of sets in not angled normed planes, and give a partial characterization for sets in angled planes.
Item Type: | Article |
---|---|
Subjects: | Q Science / természettudomány > QA Mathematics / matematika > QA73 Geometry / geometria |
Depositing User: | Dr. Zsolt Lángi |
Date Deposited: | 11 Sep 2015 11:43 |
Last Modified: | 03 Apr 2023 08:31 |
URI: | http://real.mtak.hu/id/eprint/26389 |
Actions (login required)
Edit Item |