REAL

On multiple Borsuk numbers in normed spaces

Lángi, Zsolt and Naszódi, Márton (2015) On multiple Borsuk numbers in normed spaces. STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA. ISSN 0081-6906 (Submitted)

[img]
Preview
Text
multiNormedBorsuk20131126.pdf

Download (323kB) | Preview

Abstract

Hujter and Lángi defined the k-fold Borsuk number of a set S in Euclidean n-space of diameter d > 0 as the smallest cardinality of a family F of subsets of S, of diameters strictly less than d, such that every point of S belongs to at least k members of F. We investigate whether a k-fold Borsuk covering of a set S in a �nite dimensional real normed space can be extended to a completion of S. Furthermore, we determine the k-fold Borsuk number of sets in not angled normed planes, and give a partial characterization for sets in angled planes.

Item Type: Article
Subjects: Q Science / természettudomány > QA Mathematics / matematika > QA73 Geometry / geometria
Depositing User: Dr. Zsolt Lángi
Date Deposited: 11 Sep 2015 11:43
Last Modified: 03 Apr 2023 08:31
URI: http://real.mtak.hu/id/eprint/26389

Actions (login required)

Edit Item Edit Item