Bódi, Viktor (1997) Structure of normal twisted group rings. Publicationes Mathematicae Debrecen, 51 (34). pp. 279293. ISSN 00333883

PDF
1037209.pdf Download (223Kb) 
Abstract
Let K(lambda)G be the twisted group ring of a group G over a commutative ring K with 1, and let lambda be a factor set (2cocycle) of G over K. Suppose f:G —> U(K) is a map from G onto the group of units U(K) of the ring K satisfying f(1) = 1. If x = Sigma(g is an element of G)alpha(g)u(g) is an element of K(lambda)G then we denote Sigma(g is an element of G)alpha(g)f(g)u(g)(1) by x(f) and assume that the map x —> x(f) is an involution of K(lambda)G. In this paper we describe those groups G and commutative rings K for which K(lambda)G is fnormal, i.e. xx(f)=x(f)x for all x is an element of K(lambda)G.
Item Type:  Article 

Subjects:  Q Science / természettudomány > QA Mathematics / matematika Q Science / természettudomány > QA Mathematics / matematika > QA72 Algebra / algebra 
Depositing User:  Erika Bilicsi 
Date Deposited:  16 Nov 2012 07:57 
Last Modified:  16 Nov 2012 07:57 
URI:  http://real.mtak.hu/id/eprint/3384 
Actions (login required)
View Item 