REAL

Generalizing Korchmáros-Mazzocca arcs

Csajbók, Bence and Weiner, Zsuzsa (2020) Generalizing Korchmáros-Mazzocca arcs. COMBINATORICA. ISSN 0209-9683 (In Press)

[img]
Preview
Text
revised_version_2_ARXIVRA.pdf - Accepted Version

Download (387kB) | Preview

Abstract

In this paper, we generalize the so called Korchmáros-Mazzocca arcs, that is, point sets of size $q+t$ intersecting each line in 0, 2 or t points in a finite projective plane of order q. When t is not 2 then this means that each point of the point set is incident with exactly one line meeting the point set in t points. In PG(2,p^n), we change 2 in the definition above to any integer m and describe all examples when m or t is not divisible by p. We also study mod p variants of these objects, give examples and under some conditions we prove the existence of a nucleus.

Item Type: Article
Subjects: Q Science / természettudomány > QA Mathematics / matematika > QA72 Algebra / algebra
Q Science / természettudomány > QA Mathematics / matematika > QA73 Geometry / geometria
Depositing User: Bence Csajbók
Date Deposited: 27 Sep 2020 08:41
Last Modified: 27 Sep 2020 08:41
URI: http://real.mtak.hu/id/eprint/114834

Actions (login required)

Edit Item Edit Item