REAL

Modeling of light scattering and haze in semicrystalline polymers

Molnár, János and Sepsi, Örs and Erdei, Gábor and Lenk, Sándor and Ujhelyi, Ferenc and Menyhárd, Alfréd (2020) Modeling of light scattering and haze in semicrystalline polymers. Journal of Polymer Science, 58 (13). pp. 1787-1795. ISSN 2642-4150

[img]
Preview
Text
Molnár_ Journal of Polymer Science_2020.pdf - Published Version

Download (1MB) | Preview

Abstract

This article reports a new model approach for the description of light scattering in semicrystalline polymers, to describe more precisely the influence of supermolecular structure on the optical properties. This is the first study in which light scattering of polymer films has been modeled using exact Mie scattering theory of radially anisotropic spheres. As a model material a well‐known polymer, isotactic polypropylene (iPP) was used. Samples were prepared with different sample thicknesses and crystalline structures in order to identify the key parameters of light scattering in polycrystalline polymeric systems. Validation haze measurements were carried out with a spectrophotometer equipped with a 150 mm snap‐in integrating sphere. It was found that the optical properties of the polycrystalline sample can be described using multiple light scattering on these scattering centers. Good agreement was found between the simulated and experimentally measured haze values which proves the reliability and applicability of our new approach.

Item Type: Article
Subjects: Q Science / természettudomány > QC Physics / fizika > QC02 Optics / fénytan
Q Science / természettudomány > QD Chemistry / kémia > QD02 Physical chemistry / fizikai kémia
Depositing User: Dr. János/J Móczó
Date Deposited: 29 Sep 2020 07:07
Last Modified: 03 Apr 2023 07:01
URI: http://real.mtak.hu/id/eprint/115201

Actions (login required)

Edit Item Edit Item