REAL

A New Oxygen Containing Pyclen-Type Ligand as a Manganese(II) Binder for MRI and 52Mn PET Applications: Equilibrium, Kinetic, Relaxometric, Structural and Radiochemical Studies

Csupász, Tibor and Szücs, Dániel and Kálmán, Ferenc Krisztián and Hollóczki, Oldamur and Fekete, Anikó and Szikra, Dezső and Jakabné Tóth, Éva and Tóth, Imre and Tircsó, Gyula (2022) A New Oxygen Containing Pyclen-Type Ligand as a Manganese(II) Binder for MRI and 52Mn PET Applications: Equilibrium, Kinetic, Relaxometric, Structural and Radiochemical Studies. MOLECULES, 27 (2). ISSN 1420-3049

[img]
Preview
Text
Molecules_2022_27_371.pdf
Available under License Creative Commons Attribution.

Download (3MB) | Preview

Abstract

A new pyclen-3,9-diacetate derivative ligand (H23,9-OPC2A) is synthesized possessing an etheric O-atom opposite to the pyridine ring to improve the dissociation kinetics of its Mn(II) complex (pyclen = 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene). The new ligand is less basic than the N-containing analogue (H23,9-PC2A) due to the non-protonable O-atom. In spite of its lower basicity, the conditional stability of the [Mn(3,9-OPC2A)] (pMn=-log[Mn(II)], cL=cMn(II)=0.01 mM. pH=7.4) remains unaffected (pMn=8.69) compared to the [Mn(3,9-PC2A)] (pMn=8.64). The [Mn(3,9-OPC2A)] possesses one water molecule, having a lower exchange rate with bulk solvent (kex298=5.30.4107 s-1) than [Mn(3,9-PC2A)] (kex298=1.26108 s-1). These mild differences are ration-alized by density-functional theory (DFT) calculations. The acid assisted dissociation of [Mn(3,9-OPC2A)] is considerably slower (k1=2.810.07 M-1s-1) than that of the complexes of diac-etates or bisamides of various 12-membered macrocycles and the parent H23,9-PC2A. The [Mn(3,9-OPC2A)] is inert in rat/human serum as confirmed by 52Mn labeling (nM range) as well as by relaxometry (mM range). However, 600-fold excess of EDTA (pH=7.4) or a mixture of es-sential metal ions propagated some transchelation/transmetalation in 7 days. The H23,9-OPC2A is labeled efficiently with 52Mn at elevated temperatures, yet at 37 oC the parent H23,9-PC2A per-forms slightly better. Altogether the H23,9-OPC2A shows advantageous features for further lig-and design for bifunctional chelators.

Item Type: Article
Uncontrolled Keywords: STABILITY; Magnetic Resonance Imaging; Manganese; MACROCYCLES; WATER EXCHANGE; CONTRAST AGENTS; dissociation kinetics; radiochemistry;
Subjects: Q Science / természettudomány > QD Chemistry / kémia
Q Science / természettudomány > QD Chemistry / kémia > QD02 Physical chemistry / fizikai kémia
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 12 Sep 2022 09:59
Last Modified: 12 Sep 2022 09:59
URI: http://real.mtak.hu/id/eprint/148311

Actions (login required)

Edit Item Edit Item